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ABSTRACT

Flares are a well-studied aspect of the Sun’s magnetic activity. Detecting and classifying solar

flares can inform the analysis of contamination caused by stellar flares in exoplanet transmission

spectra. In this paper, we present a standardized procedure to classify solar flares with the aid of

supervised machine learning. Using flare data from the RHESSI mission and solar spectra from the

HARPS-N instrument, we trained several supervised machine learning models, and found that the

best performing algorithm is a C-Support Vector Machine (SVC) with non-linear kernels, specifically

Radial Basis Functions (RBF). The best-trained model, SVC with RBF kernels, achieves an average

aggregate accuracy score of 0.65, and categorical accuracy scores of over 0.70 for the no-flare and

weak-flare classes, respectively. In comparison, a blind classification algorithm would have an accuracy

score of 0.33. Testing showed that the model is able to detect and classify solar flares in entirely new

data with different characteristics and distributions from those of the training set. Future efforts could

focus on enhancing classification accuracy, investigating the efficacy of alternative models, particularly

deep learning models, and incorporating more datasets to extend the application of this framework to

stars that host exoplanets.

1. INTRODUCTION

Transmission spectroscopy is highly useful and widely

used for characterizing exoplanets since it can yield valu-

able constraints on the nature and composition of plan-

etary atmospheres. Yet, due to the inhomogeneity and

time variability of the stellar photo- and chromospheres,

this method is intrinsically impacted by stellar spectral

contamination (Rackham et al. 2023). Often, the stel-

lar contamination will rival or even exceed the planetary

spectral features, making it very difficult to disentangle

the exoplanet atmospheric signals from stellar contami-

nation (Rackham et al. 2023).

Such contamination poses a challenge for measuring

an exoplanet’s transit depth accurately. To consider

the impact of stellar flares, it is helpful to begin with

an investigation of solar flares, given the abundance of

flare data for the Sun. Efficient detection and classifi-

cation methods for solar flares in transmission spectra
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could help astronomers correct for stellar contamination

in exoplanet transmission spectra with greater accuracy.

This study has been designed with two primary ob-

jectives. First, it aims to address the challenge of de-

tecting flare events in high-resolution solar spectra. To

achieve this, we correlated solar spectra with solar flare

events based on their start and end times, labeled so-

lar spectra, and fed labeled solar spectra into super-

vised machine-learning models, which enabled accurate

detection of flares based on their energy levels. Second,

the project strives to develop a robust machine-learning

model that can classify flares in solar spectra as accu-

rately as possible. Identifying low-energy flares in high-

resolution solar spectra may present a greater difficulty

compared to their high-energy counterparts. However,

the impact of low-energy flares on spectra should not

be disregarded. Thus, we aim to detect and classify all

flares in solar spectra, regardless of their energy levels.

In this study, we employed supervised learning algo-

rithms, specifically Support Vector Classification (SVC),

to detect and classify solar flares in high-resolution solar

spectra. Our methodology encompasses a standardized

procedure for classifying flares, primarily based on their

energy levels. To assess the performance of the classi-
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fication models, we utilized multi-label metrics such as

accuracy scores. By leveraging these evaluation mea-

sures, we aim to provide a framework for detecting and

categorizing solar flares in the context of high-resolution

spectra.

The paper is organized as follows. Section 2 considers

the datasets used, followed in section 3 by a description

of our methods, including data selection, analysis and

model testing. Section 4 addresses the selection of super-

vised learning algorithms and the validation of results

using multi-label metrics, and includes a discussion on

the optimization of model performance through means

such as performing grid-search and tweaking hyper-

parameters.

2. DATA

Solar spectra, ranging from July 2015 to April

2018, were drawn from the Data & Analysis Center

for Exoplanets (Data & Analysis Center for Exoplan-

ets (DACE) 2020). The spectra were collected with

HARPS-N, an optical spectrograph installed at the

Italian Telescopio Nazionale Galileo (TNG), designed

specifically for the precise measurement of radial veloci-

ties in the search for exoplanets (Cosentino et al. 2012).

The instrument offers a high resolution of ∼120,000, al-

lowing for detailed spectral analysis, and covers a range

of wavelengths. Figure 1 shows the flux from one ob-

servation against wavelength in the air. One observa-

tion here refers to the single set of data collected by

the HARPS-N over 5 minutes, capturing the intensity

of light across different wavelengths from the Sun (Du-

musque et al. 2021).

Figure 1. Solar spectrum, a single observation

Solar flare data used in this investigation were col-

lected by the Reuven Ramaty High Energy Solar Spec-

troscopic Imager (RHESSI) (NASA Goddard Space

Flight Center 2003). RHESSI was a NASA satellite

mission designed to study the Sun at high-energy X-ray

and gamma-ray wavelengths, with a focus on investigat-

ing the particle acceleration and energy release processes

in solar flares (Lin et al. 2003). The RHESSI flare list

covers a time period of approximately 17 years from

2002 to 2019. Since our study includes solar spectra

only for the period, we used solar flare data for the

same date range. The RHESSI data contain the follow-

ing information for each observation: start times and

end times, solar peak times, energy levels, duration, to-

tal peak counts, X-position and Y-position of the event

on the solar disk, radial distance of a solar flare event

from the center of the Sun, active region, and flags. We

removed data points from the dataset that contained

zero information. For example, if the X-position and

Y-position of one observation are both zero, the Spec-

troscopic Imager on the satellite failed to collect any

information, therefore the data point has to be removed

to prevent it from introducing errors into the machine

learning results.

3. METHODS

3.1. Selection of Wavelength Range, Normalization,

and Principal Component Analysis

For this study, we used solar spectra spanning as our

training data. We selected this particular wavelength

range because it contains Hα, which exhibits increased

emission during a solar flare (Ichimoto & Kurokawa

1984).

We conducted a series of pre-processing steps on the

data: First, we plotted the solar spectra for all dis-

tinct observations and identified the region exhibiting
the least fluctuation in flux. Next, we calculated the

98th percentile within that region and divided the flux

values of all data points by this value, generating a set

of normalized flux values.

Figure 2. Plot of normalized flux against wavelengths
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To reduce the effects of high-noise data on our train-

ing results, specifically outliers that appear as spikes on

the plot of a solar spectrum observation, we replaced all

of the normalized flux values that are five standard de-

viations or more from the mean of the normalized spec-

tra with the average of their neighboring values. See

figure 2 for a plot of noise-filtered normalized spectra.

Then we applied Principal Component Analysis (PCA)

to the processed data. PCA is a mathematical technique

that reduces the dimensionality of training data by pro-

jecting data points onto a lower dimensional space that

best captures the variance of the original data, there-

fore enhancing the efficiency of the subsequent machine

learning process (Abdi &Williams 2010). Our processed

data initially consisted of 28,415 observations and 16,747

wavelength bins. After PCA, we reduced the dimension

of the normalized data to (28415, 1000) with 1000 prin-

cipal components. Figure 3 shows the first 10 principal

components of the normalized solar spectra.

Figure 3. First 10 Principal Components of Normalized
Solar Spectra

3.2. Data Correlation and Labeling

Supervised learning algorithms take in a collection of

labeled data. The labeled solar spectra represent the in-

put values and their labels represent the output values.

We approximated the true relationship between the in-

put value and their labels using machine learning by la-

beling each normalized solar spectrum observation after

PCA as one of the following three labels: no flares, weak

flares, strong flares. We extracted flare events from the

RHESSI data and their corresponding energy band. In

the RHESSI data, each observation of a potential flare is

considered a “flare event ”, and each has a correspond-

ing range of energy that was observed in the duration of

the flare, referred to as the event’s “energy band”. The

flare events were divided into three label classes: spectra

without any flare events are categorized as “no flares”;

events with the energy band are categorized as “weak

flares”; All solar events with energy bands greater than

are categorized as “strong flares”. Visually, there are

no differences between the spectra despite some spectra

having flares and others not.

3.3. Imbalanced Data and Under-sampling

Under-sampling is a strategy that resolves the issue

of imbalanced data by reducing the size of the over-

represented class (Haibo He & Garcia 2009; Mosley

2013). In our study, the dominant class was the no-flare

class. Initially, we detected 28,415 flare events from the

RHESSI dataset corresponding to solar spectra observa-

tions. Notably, the strong flare class exhibited the lowest

representation, comprising only 467 instances. To pre-

serve the model’s ability to classify strong flares when

under-sampling, we randomly selected 467 no-flare spec-

tra and 467 weak flare spectra from the PCA 1000 com-

ponents data using the make imbalance function from

the imbalanced-learn module. The ratios of data be-

fore and after undersampling is represented by figure 4.

For each class, there are 467 spectra, which makes the

under-sampled set 1401 spectra.

Figure 4. Original solar flares data proportion (left) Bal-
anced solar flares data (right)
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3.4. Testing Supervised-learning Models

Since we divided the flares into three classes, we se-

lected models that are best fit for multi-class training

and compared their performance on two tasks: the av-

erage confusion matrices over 10 trials and categorical

accuracy scores (see Section 4.1 Equation 2 for defini-

tion of categorical accuracy scores). The models we se-

lected are random forest, support vector machine with

stochastic gradient descent, and C-Support Vector Clas-

sification, all implemented with sklearn (Pedregosa et al.

2011).

We evaluated the performance of each model using its

confusion matrix averaged over 10 trials. A confusion

matrix is a structured arrangement used to visualize the

effectiveness of an algorithm, often used within the con-

text of supervised learning (Stehman 1997). The matrix

expands to an n × n format, where n is the number of

categories or classes. In our case, we have a 3 × 3 ma-

trix. Each row represents the actual classes, while each

column represents the predicted classes. Each entry in

the matrix shows the number of observations from the

actual class (row) that were predicted to be in a specific

class (column) (Stehman 1997). Therefore, visually, the

brighter the diagonal of the heat map generated from

the confusion matrix is, the more instances from each

class are classified correctly.

We created the average confusion matrices by sum-

ming the confusion matrices obtained from individual

trials entry by entry and then dividing them by the num-

ber of trials. We chose to run 10 trials because unlike

reinforcement learning or deep learning models, there is

less randomness in the training process for supervised

learning, therefore it is not necessary to run the models

for a large number of trials to get their average perfor-

mance.

4. RESULTS AND DISCUSSION

4.1. Model Evaluation and Selection

We trained four models and analyzed their perfor-

mance to identify the most promising candidates for

further tuning and optimization. Table 1 shows the

descriptions of the models and their hyperparameters.

Hyperparameters are parameters of the model that are

not determined before the training process, which can

be tuned to minimize the generalization error or under-

fitting (Probst et al. 2018). None of the models that

we used in the study use the default hyperparameters

from. We selected these specific hyperparameters to op-

timize the training results based on experiments we ran

previously.

Figure 5 shows the average confusion matrices for the

four models we trained. The average confusion matrices

Algorithm Description of Hyperparame-
ters

Random Forest

• Number of Estimators: 100

SGD Classifier

• Loss Function: Hinge

C-Support Vector Classification

• Kernel: Polynomial

• Degree: 2

• C (Regularization Parame-
ter): 1.0

C-Support Vector Classification

• Kernel: Sigmoid

• C (Regularization Parame-
ter): 10

• sigma: 0.0001

Table 1. Description of Hyperparameters for Models

of SVC with an RBF kernel and Random Forest have

the brightest diagonals, which shows that the mod-

els can predict most of the data points in each class

correctly, especially when compared to the confusion

matrices of SVC with polynomial kernel and SVM with

stochastic gradient descent optimizer. This confirms

that our models have learned to correctly detect the

presence of solar flares events and classify some of them

correctly using solar spectra. We further evaluated the

performance of Random Forest and SVC with an RBF

kernel by comparing their accuracy scores and cate-

gorical accuracy scores. Accuracy score, or aggregated

accuracy score as seen in the following Equation 1, is

a commonly used metric that calculates the overall ac-

curacy of a classifier. It measures the proportion of

correctly predicted instances out of the total instances

in the dataset (Mosley 2013).

Aggregate Accuracy =
Number of Correct Predictions

Total Number of Predictions
(1)

Since aggregate accuracy is “blind” to specific classes,

we introduced another metric called the categorical ac-

curacy score to evaluate the performance of the model

for each class. Equation 2 shows the formula for the

categorical accuracy score, which is a variant of the

aggregate accuracy score specifically designed for multi-

class classification problems, like the problem in this

study where there are three classes instead of only two

(Mosley 2013). It calculates the accuracy considering

each class separately. In other words, it calculates the

proportion of correctly predicted instances for each class
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out of the total instances belonging to that class.

Categorical Accuracy =
Number of Correct Predictions in the Class

Total Number of Instances in the Class
(2)

Other than accuracy scores, we also used metrics like

Precision and Recall class-wise to further evaluate the

performance of each model. The formulas for Precision

and Recall are (Kelleher et al. 2015):

PrecisionClass A =
TP Class A

TPClass A + FPClass A

(3)

RecallClass A =
TP Class A

TPClass A + FNClass A

(4)

where “TP” is True Positives, the number of instances

that were positive in the dataset and were correctly clas-

sified as positive by the model, “FN” is False Negatives,

the number of instances the model failed to identify as

positive when they actually were, and “FP” represents

False Positives, the number of instances the model mis-

takenly classified as positive when they were actually

negative. As seen in Equation 3, precision for a given

class in multi-class classification is the fraction of in-

stances correctly classified as belonging to a specific class

out of all instances the model predicted to belong to that

class (Kelleher et al. 2015). In other words, precision

tells you the ratio of true positives to all instances that

the model predicted as positive. Precision measures the

accuracy of all positive predictions.

Another evaluation metric we used was the F1 score,

which evaluates the performance of a model using both

precision and recall. Equation 5 shows the formula for

F1 score.

F1 =
2

Recall−1 + Precision−1
(5)

A high F1 score indicates a balanced performance,

meaning that the model is both accurate in predicting

positive instances and is able to classify most of the pos-

itive instances correctly (Powers 2008).

4.2. SVC with an RBF Kernel

Figure 6 shows that in our preliminary experiments

with different models SVC with an RBF kernel had the

best performance in both aggregate and categorical ac-

curacy scores for all three classes. The average aggregate

accuracy score over 10 trials is 0.68. The average cat-

egorical accuracy scores for each of the classesare 0.64,

0.77, and 0.56, respectively.

Figure 5.

Figure 7 shows the average Precision, Recall, and F1

scores of each model. The Random Forest model demon-

strates a balanced performance with both Precision and

Recall at around 0.53. This suggests that it maintains

a good equilibrium between correctly identifying posi-

tive cases and minimizing false positives. The F1 score

of 0.52 further reinforces this balance, making it a solid

choice when a trade-off between Precision and Recall

is required. The SGD Classifier, on the other hand,

exhibits lower Precision (0.28) and Recall (0.35) com-

pared to the Random Forest. This indicates that it

might struggle with both correctly classifying positive

instances and minimizing false positives. The F1 score

of 0.21 underscores this performance gap, implying that

this model may not be the best option in situations

where Precision and Recall are critical. The SVC with

a 2nd-degree polynomial kernel shows similarly subopti-

mal performance with a low Precision of 0.22 and Recall

of 0.33. Its F1 score of 0.22 suggests that it doesn’t excel

at either precision or recall. This model appears to un-

derperform in comparison to the Random Forest. The

SVC with an RBF kernel has the highest Precision, Re-

call, and F1 score, all at 0.67. This model performs well

in both correctly classifying positive instances and min-

imizing false positives compared to the other models.

Based on these results, We decided to further optimize

the SVC model with an RBF kernel.

The SVC function from scikit-learn with RBF kernel

has two hyper-parameters, C and γ, that allow us to

find the right value of variance that optimizes the model

performance with the RBF Kernel function (Pedregosa
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Figure 6. Categorical and aggregated accuracy score of each
algorithm

Figure 7. Average precision, recall, and F1 scores of each
algorithm

et al. 2011). C value is the regularizer parameter that

can be manipulated to control the extent of overfitting.

A high C value may lead to overfitting, and a low C

value may lead to underfitting, where the model is too

generalized to identify the pattern in training data. γ

defines how far the influence of a single training example

reaches. A high γ value suggests “close” and may lead

to overfitting because it requires the data points to be

Figure 8. Grid Search, aggregate accuracy and correspond-
ing C and γ values of SVC with an RBF kernel

close to group them; a low γ value suggests “far” and

may lead to under-fitting (Pedregosa et al. 2011). We

applied GridSearh CV from sklearn to determine which

combination of C value and γ value result in the best

aggregate accuracy score.

To determine good values of the hyperparameters, it

is important to search on the right scale. (Chih-Wei

Hsu et al. 2016) We decided to test a range of C values,

0.001, 0.01, 0.1, 1.0, 10.0, and 100.0, aiming to encom-

pass a broad spectrum, since the most common range of

C values to test is (Chih-Wei Hsu et al. 2016). Initially,

our empirical testing focused on the common range of

0 to 1.0 for C. Notably, we observed a substantial in-

crease in accuracy scores as C surpassed 1, particularly

with γ values of 0.00001, 0.0001, and 0.001. However,

for C values higher than 10.0, we detected no signifi-

cant accuracy improvement; instead, there was a slight

decrease. Moreover, C values exceeding 100 exhibited a

higher likelihood of leading to overfitting. Consequently,

we decided to stop further testing C values higher than

100.

Similarly, we tried different γ values to find one that

balances the variance and the bias of our model. The γ

value corresponds to the margin of the kernel function

in the higher-dimensional space that training data were

projected onto. In this higher dimensional space, we
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Figure 9. Accuracy score distribution across 1000 trials for
no flare, weak flares, and strong flares

partition the training data into 3 sections, corresponding

to the number of classes in our multi-class classification

problem. The boundaries at the intersection of these 3

spaces are called the decision boundaries (Kelleher et al.

2015). A high γ value means only the closest points to

the decision boundary will carry the weight leading to a

smoother boundary, which likely results in over-fitting.

Whereas a low γ value corresponds to a larger margin

that contains more data points, which leads to under-

fitting. We tested a range of γ values to see their effects

on the training results and whether decreasing the γ

value would lead to high-accuracy model performance.

The values chosen were 0.00001, 0.0001, 0.001, 0.01, and

0.1. We chose this range because, theoretically, choos-

ing exponentially growing sequences of C and γ values is

more efficient when determining good parameters using

grid search (Chih-Wei Hsu et al. 2016). In practice, it is

good to try a γ value that is 6/k, where k is the number

of input data samples (Chapelle & Zien 2005). Here

we have 1401 data points, which theoretically makes

6/1401 = 0.002 an ideal γ value. Nonetheless, using

a moderately coarse grid helps to identify the optimal

region within it. Then, we can empirically determine

which region on the coarse grid results in better perfor-

mance. This is why we chose a slightly wider range of

C and γ values compared to common practice.

As seen in Figure 9, when C = 10.0 and γ = 0.0001,

the SVC model with an RBF kernel achieves an aggre-

gate accuracy score of 0.60, which is the highest out of all

tested combinations. We identified that the model per-

formance is optimal when C is between 10.0 and 100.0,

and when γ is between 0.0001 and 0.001.

5. CONCLUSIONS

Based on the results presented above, we concluded

that it is possible to detect and classify solar flares in

optical high-resolution spectra using supervised learning

algorithms. We used SVC with an RBF kernel to catego-

rize solar flares into three classes. The model exhibited

an overall accuracy score of 0.65, showcasing its abil-

ity to distinguish among these distinct flare categories.

A blind classification algorithm would have an accuracy

score of 0.33, so our algorithm is a significant improve-

ment. Nonetheless, there are some apparent limitations

to our findings.

One limitation is the model’s comparatively low accu-

racy in classifying the “strong flare” category, as evident

from a categorical accuracy of 0.56. A possible strat-

egy for improvement is supplementing the training data

with more actual data on strong flares; increasing the

model’s exposure to this class should enhance its ability

to classify strong flares accurately.

Another limitation is the overall performance of the

SVC model with the RBF kernel. The aggregate accu-

racy shows that more than half of the time the model can

classify most data points correctly, but there is still room

for performance enhancement. The parameter choices,

such as C (set at 10) and γ (0.0001), may not be op-

timally configured, necessitating a more comprehensive

exploration of hyperparameter settings. To further im-

prove the overall accuracy of our current SVC model,

a multifaceted approach can be adopted. First, fine-

tuning the hyperparameters, such as the regularization

parameter (C) and the kernel-specific parameter (γ),

through a more extensive grid search can lead to an

optimized model configuration. This would enable us to

strike the right balance between model complexity and

generalization.

Also, while there are documented time differences be-

tween these regions, as supported by relevant literature,

these differences are not consistently predictable. Given

the variability and our lack of precise knowledge about

these time discrepancies, our investigation does not ex-

plicitly account for them. Additionally, solar flares,

which are the focus of our study, persist over extended

periods rather than occurring as instantaneous events.

Our approach assumes the effectiveness of our current

method, and the performance of our final machine learn-

ing model supports this assumption, showing satisfac-

tory results.

Moreover, our findings reveal implications for the

characteristics of the underlying data. Notably, the RBF

kernel demonstrated significant performance in classify-

ing weak flares, both before and after hyperparameter

tuning. The model achieves an average categorical accu-

racy score of 0.77 before tuning, and an average categor-
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ical accuracy score of 0.80 after tuning. This suggests

that weak flares may exhibit distinct and non-linear

patterns effectively captured by the RBF kernel. In

other words, the data may not be homogeneous, and the

classes may have varying degrees of complexity.One pos-

sible explanation could be that all of the “weak flares”

are similar to each other, while the strong flares repre-

sent a larger range of flare energies. Therefore, when our

model is tested on the testing data, it might be less ac-

curate when predicting strong flares compared to weak

flares.

In future work, one could explore other learning algo-

rithms to determine if they achieve better performance.

Ensemble learning methods, such as Random Forest and

Gradient Boosting, harness the collective power of mul-

tiple models and potentially improve overall classifica-

tion accuracy. Also, given the non-linear nature of the

underlying data, as evidenced by the performance of the

RBF, it makes sense to consider the potential of employ-

ing deep learning techniques as a next step. Deep learn-

ing could potentially address the local cluster patterns

within our high-dimensional data due to its capability to

uncover hidden structures and nuances that may elude

traditional machine-learning models. It is possible that

a neural network with many neurons can preserve and

identify the complex patterns in strong flare data that

supervised learning models struggle to capture.

Our work reported here represents an initial investi-

gation aimed at automating the detection and classifi-

cation of flares in high-resolution solar spectra. While

we have achieved the development of a model capable of

classifying solar flares within this context, future efforts

should focus on enhancing the prediction accuracy and

exploring the potential of alternative models, including

deep learning approaches, to further refine the classifi-

cation capabilities.

The longer-term vision is to develop a robust frame-

work for detecting and categorizing stellar flares not just

in our solar system, but also in the broader context of

exoplanetary systems. The latter would enable more ac-

curate corrections for stellar contamination. Extending

such an approach to the host stars of exoplanets involves

adapting the SVC models to cater to the particular char-

acteristics of these stars’ spectra. Since the spectral sig-

natures and flare activities of exoplanet host stars might

differ from those of the Sun, the model would require re-

calibration and retraining with relevant datasets. The

recalibration would involve adjusting the model to rec-

ognize flare signatures in different stellar environments,

taking into account factors such as the star’s size, age,

and magnetic activity.
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